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Viscoelastic behavior of an ordering latex suspension in a steady shear flow

B. van der Vorst, D. van den Ende,* N. A. Tekin, and J. Mellema
J.M. Burgerscentrum, Rheology Group, Department of Applied Physics, University of Twente,

P.O. Box 217, 7500 AE Enschede, The Netherlands
~Received 16 September 1997!

The linear viscoelastic behavior of an ordering polystyrene latex during steady shear flow has been inves-
tigated. In this study a home-made instrument has been used that superimposes a small-amplitude oscillatory
shear orthogonal onto the steady shear flow. The measurements can be interpreted as due to the coexistence of
two phases under flow. For increasing shear rate the ordered~or solidlike! phase melts away until the suspen-
sion becomes completely disordered~or fluidlike!. A model is presented in which the fluid is conceived as a
viscoelastic matrix containing spherical viscoelastic domains. The model predicts a similar linear viscoelastic
behavior of sheared lattices as found experimentally. The resulting parameters give information about the
microstructure of the dispersion under shear flow.@S1063-651X~98!15002-X#

PACS number~s!: 83.50.Fc
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I. INTRODUCTION

In recent years a lot of work has been done both exp
mentally and theoretically, to investigate and understand
linear viscoelastic behavior of ordering latices at rest~for a
compilation of data see@1#!. The shear viscosity of thes
latices has been studied experimentally, for instance,
Chen and Zukoski@2#, Buscall@3#, and Quemada@4#. Theo-
retical models have been given by Buscall@3# and Quemada
@4#. To describe the measured viscosity as a function of sh
rate and volume fraction more quantitatively a microrhe
logical model has recently been proposed by Van der V
et al. @5#. This model was based on the hypothesis that i
steady shear flow the latex dispersion consists of orde
domains, space filling at rest, which melt away shear
duced, in favor of the disordered fluid phase as observed
Imhof et al. @6#. The linear viscoelastic behavior of thes
ordering latices during steady shear flow has been inve
gated in order to corroborate or falsify this picture.

Linear viscoelastic measurements on an ordered late
rest give information about the microstructure of the susp
sion at rest. The steady shear viscosity of the ordering la
will be determined by the microstructure of the suspension
shear flow. This viscosity gives some information about
shear rate dependence of the microstructure. A transitio
the shear viscosity as a function of the shear rate indicat
change of the microstructure in the fluid. However, spec
information about the morphology of the microstructure
difficult to obtain from such a flow curve and is model d
pendent. In order to probe the microstructure of the latex
shear flow, dynamic measurements were performed o
sheared latex. A home-made instrument was used that su
imposes a small-amplitude harmonic shear orthogonal
steady shear flow@7#. Although the experimental method ha
been used before@8#, this is, as far as we know, the firs
application in dispersion rheology. The experiments are
scribed in Sec. III. In Sec. II the theoretical model for t
dynamic viscosity for an emulsion of viscoelastic droplets

*Author to whom correspondence should be addressed.
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a non-Newtonian fluid is described. Finally, in Sec. IV th
experimental and theoretical results are discussed.

II. THEORY

The linear viscoelastic behavior of an ordering latex d
persion during steady shear flow is described with a mo
originally developed for a nondilute emulsion of deformab
spheres@9,10#. The latex suspension is modeled as a disp
sion of spherical crystalline aggregates dispersed in a lin
viscoelastic fluid. The aggregates contain latex particles
dered in a crystal array and the viscoelastic fluid consists
disordered latex~see Fig. 1!. The particle densities in both
phases are kept equal. The linear viscoelasticity of the c
talline aggregates is described with a Maxwell fluid:

Gcr* 5G`
cr~vtcr!

21 ivtcr

11~vtcr!
2

1 ivh` . ~1!

Gcr* has been taken equal to the shear modulus of the dis
sion at rest. The disordered liquid phase is also modeled
Maxwell fluid with complex viscosity:

FIG. 1. The suspension is modeled as an emulsion of sphe
crystallites~droplets! of sizeL in a disordered~fluidlike! phase.
3115 © 1998 The American Physical Society
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hfl* 5~hfl2h`!
12 ivtfl

11~vtfl!2
1h` . ~2!

Heretfl5(hfl2h`)/G`
fl while G`

cr andG`
fl are the high fre-

quency shear moduli at rest for the ordered and disorde
phase, respectively;h` is the high frequency viscosity a
rest, which is chosen equal for the ordered and disorde
phase in the suspension;hfl5hfl(ġ) is the viscosity of the

TABLE I. The coefficientsan expressed inE5hcr* /hfl* .

n an(E)

0 76~1-E)~1-E)
3 25~1-E)~18119E)
5 42(E-1!~16119E)
7 25~1-E)~16119E)
10 2~312E)~16119E)
ed

ed

FIG. 2. The storage modulus~open symbols! and the loss modu-
lus ~solid symbols! as a function of the frequency at zero shear rat
for several preshear times. The duration of the applied preshear

ġ51.25 s21 was 0 min (s), 4 min (n), 6 min (h), 10 min (,),
36 min (L), f50.20.
e
he curves
FIG. 3. The storage modulus~upper two figures! and the loss modulus~lower two figures! as a function of the frequency for a volum
fractionf50.10. The two figures on the left-hand side show the experimental results and the figures on the right-hand side show t
fitted to these experiments. The applied shear rates are 0 s21 ~1!, 0.0125 s21 (n), 0.025 s21 (d), 0.05 s21 (,), 0.5 s21 (L).
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FIG. 4. The storage modulus~upper two figures! and the loss modulus~lower two figures! as a function of the frequency for a volum
fractionf50.20. The two figures on the left-hand side show the experimental results and the figures on the right-hand side show t
fitted to these experiments. The applied shear rates are 0 s21 ~1!, 0.0125 s21 (n), 0.025 s21 (d), 0.05 s21 (,), 0.5 s21 (L), 1.25 s21

(h), 5 s21 (.), 10 s21 (h), 25 s21 (s).
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disordered fluid phase, which depends on the steady s
rate ġ. Graebling and Muller@11# describe an emulsion
model of two viscoelastic liquids. This model is accurate
to orderf wheref is the volume fraction of the disperse
phase. The volume fraction of crystalline aggregates,fcr ,
however, will be rather high at low shear rates, so we
interested in a model forG* that is also applicable at hig
fcr . Therefore an effective medium cell model for the line
viscoelasticity of emulsions proposed by Oosterbroek
Mellema@10# has been modified. In this model the spheric
aggregate with radiusr a5L/2 is at the center of a cell with
radius r c . Within this cell the fluid surrounding the aggre
gate has a viscosityhfl* and the aggregatehcr* 5Gcr* / iv. The
oscillatory flow problem is solved for small deformation
when the aggregates stay almost spherical. Therefore th
tational part of the flow may be neglected and only the p
straining contribution is considered. At the outer boundary
the cell the flow field is supposed to match the macrosco
flow field. At the boundary of the aggregate the deformat
and stresses inside the aggregate match those inside the
ar

p

e

r
d
l

ro-
e
f
ic
n
uid,

because there is no surface tension for the aggregate
sumed. From the calculated flow and stress field~see Oost-
erbroek and Mellema@10# and the Appendix for details! an
expression for the complex shear modulus of the dispers
is obtained:

G* 5 ivhfl* S 12
f 3~ 2

5 a7R71 5
2 a0!

a10R
101a7R71a5R51a3R31a0

D ,

~3!

where R5r c /r a . The expressions foran(E) are listed in
Table I whereE5hcr* /hfl* . The distancer c can be regarded
as the effective hydrodynamic interaction radius. The re
tion betweenr c andfcr was taken equal to that proposed b
Thomas@12#: r c5 f r afcr

21/3. He found that there was goo
agreement with experiments forf 51.111 when he compare
Simha’s theory@13# for the suspension viscosity@which is
equal to limv→0(G9(v)/v)# with high-shear steady-stat
viscosity data on suspensions of rigid spheres. For low v
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FIG. 5. The storage modulus~upper two figures! and the loss modulus~lower two figures! as a function of the frequency for a volum
fractionf50.30. The two figures on the left-hand side show the experimental results and the figures on the right-hand side show t
fitted to these experiments. The applied shear rates are 0 s21 ~1!, 0.0125 s21 (n), 0.025 s21 (d), 0.05 s21 (,), 0.5 s21 (m), 1.25 s21

(h).
o
pe
ga
io
re
e

n
el

a

re
ib

e

de-

the
les

e
on-
lyte

r-
tru-
nic
has
ume fractions of aggregates this expression forG* is equiva-
lent to the result obtained by Graebling and Muller@11#. The
dynamic modulusG* that results from this model shows tw
separate transitions. The transition at low frequencies
tains to the relaxation process in which a deformed aggre
relaxes to its equilibrium state. The strength of this transit
decreases with decreasing volume fraction of the orde
phase~droplets! and also its typical time scale decreas
since it is proportional toh/G`

cr where the viscosity of the
dispersion,h, decreases with decreasingfcr , while G`

cr is a
constant. The second transition occurs at a higher freque
and stems from the fluid phase, which has been mod
with a Maxwell model according to Eq.~2!. The strength of
this transition increases with decreasing droplet volume fr
tion.

III. EXPERIMENTS

A. The model fluid

In the present study, we use a monodisperse polysty
latex that has been prepared following the method descr
r-
te
n
d

s

cy
ed

c-

ne
ed

by Goodwin et al. @14#. A comprehensive survey of th
preparation of latices is given by Hearnet al. @15#. The pu-
rification and characterization of the samples have been
scribed in detail in a previous article@1#. The latex disper-
sions used for our experiments are characterized by
particle radiusa, the surface charge density on the partic
s, the excess electrolyte concentrationnb , and the volume
fractionf. The particle radiusa5195 nm was obtained from
electron microscopy and the surface charge densitys5
24.6mC/cm2 from conductometric titration. The electrolyt
concentration of the latex has been reduced with an i
exchange resin as much as possible. The resulting electro
concentration is aboutnb510 mM @1#. Samples with volume
fractionsf50.10, 0.20, 0.30, and 0.35 were used.

B. Apparatus

To study the complex or dynamic shear viscosity of o
dered latices during steady shear flow, a home-made ins
ment was used, that applies a small amplitude harmo
shear orthogonal on a steady shear flow. This instrument



e
he curves

57 3119VISCOELASTIC BEHAVIOR OF AN ORDERING LATEX . . .
FIG. 6. The storage modulus~upper two figures! and the loss modulus~lower two figures! as a function of the frequency for a volum
fractionf50.35. The two figures on the left-hand side show the experimental results and the figures on the right-hand side show t
fitted to these experiments. The applied shear rates are 0.05 s21 (n), 0.5 s21 (d), 1.25 s21 (,).
an

x
a

d

-

ie
c

vi
n
e

am

e

n-
ion.
nd

of
of

ini-
nd

ured
ea-
the

ure
du-
min
by

ases
his

kes
been described in detail by Zeegerset al. @7#. It consists of a
thin walled cylinder that oscillates in an axial direction in
annular sample holder. The cylinder is suspended from
spring, which in turn is attached to a linearly oscillating e
citer. The annular beaker can be rotated, providing the ste
shear flow. From the measured phase differencew and am-
plitude ratioR of the oscillatory displacements of exciter an
cylinder the fluid impedanceZ* is obtained and fromZ* the
complex shear modulusG* can be calculated. The instru
ment operates in the frequency range from 1023 to 50 Hz
and the steady shear rateġ ranges from 0.01 to 100 s21. The
oscillatory shear amplitude of the instrument can be var
between 0.003 and 3, so linearity of the measurements
be checked.

C. Measuring procedure

Since we are interested in the linear viscoelastic beha
of the latices, the linear regime for given experimental co
ditions was determined before every measurement by m
suring the dependency of the complex modulus on the
a
-
dy

d
an

or
-
a-
-

plitude of the shear strain. From this investigation w
obtained a critical shear straingc50.02 below which the
storage modulusG8 and the loss modulusG9 do not depend
on the shear straing. The critical shear was almost indepe
dent of applied frequency, shear rate, and volume fract
These observations are in line with those of Goodwin a
Hughes@16#. Also the influence of different shear histories
the latices due to the rather uncontrollable filling process
the instrument should be investigated and if possible m
mized by applying a well-defined shear history. To that e
the samples were presheared at 1.25 s21. The behavior of
the complex modulus at a certain shear rate was meas
after different preshear times. The complex modulus m
sured at zero shear rate depends most significantly on
shear history. This case is shown in Fig. 2. From this fig
it follows that the behavior of the storage and the loss mo
lus becomes independent of the preshear time above 10
preshearing. Moreover, the storage modulus is flattened
the preshear and the minimum of the loss modulus decre
and shifts to lower frequencies due to the preshear. T
indicates that preshearing results in an enhanced~long range!
ordering in the sample. We also investigated the time it ta
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TABLE II. The model parameters as obtained from this and previous work@5#; the columns from@5# are
indicated with~@!; tcr580 s for all values off.

f G`
cr h` ġ Rcr /a fcr hfl tfl ho

@Pa# @Pa s# @s21# @Pa s# @s# @Pa s#

~@! ~@! ~@! ~@!

0.1 0.2 0.003 0.0125 23 ? 0.32 0.65 0.19 3.24 0.65 0.5
0.025 22 ? 0.31 0.33 0.10 1.64 0.33 0.28
0.05 20 ? 0.30 0.17 0.054 0.759 0.17 0.14
0.5 12 ? 0.17 0.038 0.012 0.146 0.038 0.01

0.2 3.0 0.006 0.0125 46 0.45 0.48 1.05 1.69 0.326 15 12.5
0.025 45 0.44 0.48 0.71 0.86 0.220 10 6.25
0.05 44 0.44 0.48 0.42 0.44 0.125 5.8 3.14
0.5 37 0.24 0.45 0.18 0.059 0.0497 0.56 0.35
1.25 30 0.26 0.42 0.097 0.033 0.0253 0.35 0.16
5 17 0.25 0.31 0.016 0.018 0.0067 0.053 0.05

10 12 0.17 0.23 0.023 0.015 0.0142 0.023 0.03
25 8 0.13 0.09 0.011 0.012 0.0050 0.018 0.01

0.3 21 0.008 0.0125 73 0.48 0.55 6.2 4.81 0.258 110 65
0.025 73 0.45 0.55 3.1 2.43 0.155 45 33
0.05 70 0.56 0.54 2.0 1.23 0.0797 77 16
0.5 61 0.42 0.53 0.47 0.16 0.0159 5.9 1.8
1.25 50 0.43 0.50 0.22 0.087 0.0092 3.0 0.8

0.35 37 0.01 0.05 105 0.55 0.58 2.6 1.25 0.0700 98 25.7
0.5 79 0.49 0.55 0.68 0.19 0.0168 15 2.93
1.25 63 0.47 0.53 0.35 0.11 0.0113 6.4 1.34
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before the complex modulus reaches its equilibrium va
after a change in the shear rate. It was found that in the w
case, steady state was reached after 5 min of shearing.

Taking into account these considerations, the follow
measuring procedure has been set up. After filling the ins
ment with 10 ml latex, the material is presheared at a sh
rate of 1.25 s21 for 20 min. Subsequently, shearing
stopped and the complex modulusG* is measured as a func
tion of the frequency at zero shear rate. NextG* is measured
for increasing steady shear rates after applying this shear
for 5 min. In order to obtain information on the reproducib
ity, the experiment is repeated after filling the appara
again with a new sample.

D. Results and analysis

The experimental results forf50.10, 0.20, 0.30, and 0.3
are presented in the left panels of Figs. 3 through 6, res
tively. For all volume fractions, exceptf50.10, the storage
and loss moduli measured at low shear rates indicate
existence of at least two transitions. The characteristic
quency of both transitions increases with increasing sh
rate. The strength of the low-frequency transition decrea
with increasing shear rate. Since the high frequency mod
does not depend strongly on the shear rate, the decrea
e
st

g
u-
ar
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s

c-

he
-

ar
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the strength of the low frequency transition is more or le
compensated by an increasing strength of the high freque
transition so the added strength of the two transitions
mains almost constant. In addition forf50.10 and 0.20, the
loss modulus measured for different shear rates at high
quencies tends to coincide on a single curve with a cons
high-frequency viscosity (G95h`v).

The measurements are compared with the model
scribed in Sec. II. This model contains six independent
rameters: the high-frequency modulusG`

cr of the crystallites,
hfl of the fluid phase, and the characteristic time scalestcr
and tfl of both phases. The fifth parameter is the high f
quency viscosityh` , which is taken equal for both the ag
gregates and the fluid phase. The last parameter in this m
is the volume fraction of aggregatesfcr . The viscoelastic
properties of a single crystallite in shear flow are assume
be identical with that of the dispersion at zero shear rate.
the values forG`

cr , tcr , andh` have been determined, for a
four volume fractions independently, by comparing the m
surements at zero shear rate with the Maxwell model
scribed by Eq.~1!. The values found this way for these p
rameters are used in the analysis of the measuremen
nonzero shear rate. Thus, the only remaining parameters
hfl , tfl , and fcr . These have been determined, for ea
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FIG. 7. The volume fraction of ordered domains~upper left!, the mean radius of the ordered domains~upper right!, the viscosity of the
disordered fluid~lower left! and the viscosity of the suspension~lower right figure! as a function of the steady rate of shear for a volu
fraction f50.20. The solid lines represent the results obtained from the flow curve modeling and the dashed lines the results
viscoelastic modeling.
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shear rate independently, by comparing the model to the
perimental results. The obtained values for the para
eters are listed in Table II together wit
h05 lim v→0@G* (v,ġ)/v#. The corresponding curves ar
shown in the right panels of Fig. 3 through 6. Forf50.10,
where just one transition is visible, no significant contrib
tion from the ordered domains could be obtained so for
value off no values forfcr are given in Table II.

IV. DISCUSSION AND CONCLUSIONS

From the two distinct transitions observed in the dynam
measurements shown in Figs. 4 through 6 we conclude
there are two sets of relaxation processes acting in the fl
For a fixed volume fraction the total strength of the tw
transitions is more or less constant (G`'const! and the
strength of the low frequency transition decreases with
creasing shear rate. Above observations are consistent
our hypothesis based on the experiments of Imhofet al. @6#,
that in a steady shear flow the latex dispersion consist
ordered domains, space filling at rest, which melt away
favor of the disordered fluid phase. The model based on
hypothesis describes the experiments quite well. From Ta
II one observes that, in the frame of this model, not only
viscosity of the dispersion (h0) but also the viscosity of the
x-
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c
at
id.

-
ith

of
n
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disordered phase (hfl) is strongly shear thinning. Moreove
the volume fraction of ordered domains,fcr , indeed shows a

tendency to decrease with increasingġ, which is most
clearly for f50.2.

The measurements indicate that the complex modu
consists of two sets of relaxation times instead of the t
distinct times present in our model. This can be conclud
for instance, from the fact that the local minimum in the lo
modulus at zero shear rate is not as deep as predicted b
model. Indeed one should expect a series of relaxation ti
instead of a single time due to the many particle interacti
present in the material that cause excitation of many inte
modes.

The results of this work can be compared with those
tained recently by van der Vorstet al. @5# for the steady
shear viscosity of these dispersions. Although the mo
used in that study is completely different from the pres
one, they both result in values for the microrheological p
rametersfcr andhfl . Therefore these values are also listed
Table II together with the parameterRcr . Both models show
more or less the same dependence of the parameters upo
volume fraction and the rate of shear, as can be seen in
7. In the upper two panels of this figure the shear melt
process is shown, while in the lower two not only the she
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thinning behavior of the suspension but also that of the
ordered fluid phase is shown. Although the models in b
cases are rather crude, they capture the main features o
behavior of ordering latex suspensions in a steady sh
flow.
It is possible to improve the model, but before that the n
aspects have to be studied. First in the analysis of the exp
ment isotropy of the sample itself is assumed, but this
doubtful in the case of long range ordering in the samp
Second the variation of the steady shear rate over the gap
to the strong shear thinning behavior of the suspension g
rise to a systematic error in the measuredG* , which can be
as large as a factor 2. However, the measurements do
change qualitatively when corrected. Considering this
model describes the measured linear viscoelastic beha
adequately. It corroborates the experimental results e
quantitatively rather well, indicating that our hypothesis
useful in describing processes such as the one studied
In order to obtain more quantitative results both the exp
mental method and the modeling will be studied in mo
detail in the future.

APPENDIX: FORMAL CALCULATION OF G*

To calculateG* of the dispersion the result of Ooste
broek and Mellema@10# can be used directly. Since there
no interface present between aggregate and fluid all the
terface parameters are set equal to zero and becauseH→`
their expression for the complex viscosity@Eq. ~A1.2!# re-
duces to
eo

n

d
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h* 2h

h
5f

g0

g08
,

where g05C10R
101C3R3 and g085C108 R101C78R

7

1C58R
51C38R

31C08 . In the present caseh5hfl* and
f5fcr . The coefficientsCn reduce to

C352190~E21!2,

C105110~19E116!~E21!,

C085176~E21!2,

C385225~19E118!~E21!,

C585142~19E116!~E21!,

C785225~19E116!~E21!,

C108 512~19E116!~2E13!.

Rememberingfcr5( f r a /r c)
35 f 3R23 one obtains

G* 5 ivh*

5 ivhfl* S 11
f 3~C10R

71C3!

C108 R101C78R
71C58R

51C38R
31C08

D ,

~A1!

which is, after some manipulation, equivalent with Eq.~3!.
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