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Viscoelastic behavior of an ordering latex suspension in a steady shear flow

B. van der Vorst, D. van den Endel. A. Tekin, and J. Mellema
J.M. Burgerscentrum, Rheology Group, Department of Applied Physics, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
(Received 16 September 1997

The linear viscoelastic behavior of an ordering polystyrene latex during steady shear flow has been inves-
tigated. In this study a home-made instrument has been used that superimposes a small-amplitude oscillatory
shear orthogonal onto the steady shear flow. The measurements can be interpreted as due to the coexistence of
two phases under flow. For increasing shear rate the orderesblidlike) phase melts away until the suspen-
sion becomes completely disorder@ fluidlike). A model is presented in which the fluid is conceived as a
viscoelastic matrix containing spherical viscoelastic domains. The model predicts a similar linear viscoelastic
behavior of sheared lattices as found experimentally. The resulting parameters give information about the
microstructure of the dispersion under shear flp81063-651X98)15002-X

PACS numbd(s): 83.50.Fc

I. INTRODUCTION a non-Newtonian fluid is described. Finally, in Sec. IV the
experimental and theoretical results are discussed.
In recent years a lot of work has been done both experi-

mentally and theoretically, to investigate and understand the Il. THEORY
linear viscoelastic behavior of ordering latices at rdst a . . . . . .
compilation of data segl]). The shear viscosity of these The linear viscoelastic behavior of an ordering latex dis-
latices has been studied experimentally, for instance, bpersion during steady shear flow is described with a model
Chen and Zukoski2], Buscall[3], and Quemad4]. Theo- originally developed for a nondilute emulsion of deformable
retical models have been given by Busdal and Quemada s_phere{g,lo]._ The latex suspension is queled as a dls_per-
[4]. To describe the measured viscosity as a function of sheaion Of spherical crystalline aggregates dispersed in a linear
rate and volume fraction more quantitatively a microrheo-viscoelastic fluid. The aggregates contain latex particles or-
logical model has recently been proposed by Van der Vvorsered in a crystal array and the viscoelastic fluid consists of
et al. [5]. This model was based on the hypothesis that in Hisordered lateXsee Fig. 1 The particle densities in both

steady shear flow the latex dispersion consists of ordereB12ses are kept equal. The linear viscoelasticity of the crys-

domains, space filling at rest, which melt away shear intalline aggregates is described with a Maxwell fluid:

duced, in favor of the disordered fluid phase as observed by .
Imhof et al. [6]. The linear viscoelastic behavior of these G*_Gcr(chr) +|chr+i
. . i . . a=Go—————tiwn.. D
ordering latices during steady shear flow has been investi- 1+ (w7g)?

gated in order to corroborate or falsify this picture.

Linear viscoelastic measurements on an ordered latex @, has been taken equal to the shear modulus of the disper-
rest give information about the microstructure of the suspension at rest. The disordered liquid phase is also modeled as a
sion at rest. The steady shear viscosity of the ordering lateMaxwell fluid with complex viscosity:
will be determined by the microstructure of the suspension in
shear flow. This viscosity gives some information about the
shear rate dependence of the microstructure. A transitonof © o © © 0 © 05 O O © 0 ¢ O
the shear viscosity as a function of the shear rate indicatesa © o © ¢ 0o O OO o O o 0N O
change of the microstructure in the fluid. However, specific O 00 o© o000
information about the morphology of the microstructure is 0@ 00 O
difficult to obtain from such a flow curve and is model de- O 0 © 0 %00 q
pendent. In order to probe the microstructure of the latex in @ © nC -
shear flow, dynamic measurements were performed on a © 7
sheared latex. A home-made instrument was used that super- ©Co Yo Oooow
imposes a small-amplitude harmonic shear orthogonal to a
steady shear flow7]. Although the experimental method has o0
been used beforf8], this is, as far as we know, the first o 0o
application in dispersion rheology. The experiments are de-
scribed in Sec. lll. In Sec. Il the theoretical model for the o) OO o ©
dynamic viscosity for an emulsion of viscoelastic droplets in O 0 0 4

FIG. 1. The suspension is modeled as an emulsion of spherical
* Author to whom correspondence should be addressed. crystallites(droplets of sizeL in a disorderedfluidlike) phase.
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Here 7= (74— 7..)/G" while G andG" are the high fre-
quency shear moduli at rest for the ordered and disordered F!G: 2. The storage moduléspen symbolsand the loss modu-
phase, respectivelyy.. is the high frequency viscosity at lus (solid symbol$ as a function of the frequency at zero shear rate

rest, which is chosen equal for the ordered and disorderef(ﬁ)r severzil preshear .tlmes. The'duratlon of the applled' preshear of
y=1.25 s was 0 min ), 4 min (A), 6 min (d), 10 min (V),

phase in the suspension;= 7q(y) is the viscosity of the 36 min (), ¢=0.20.
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FIG. 3. The storage moduly{gsipper two figuresand the loss moduludower two figure$ as a function of the frequency for a volume
fraction ¢=0.10. The two figures on the left-hand side show the experimental results and the figures on the right-hand side show the curves
fitted to these experiments. The applied shear rates aré 0-s), 0.0125 s (A), 0.025 s (@), 0.05s* (V),05s 1 (0).
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FIG. 4. The storage modulysipper two figuresand the loss moduludower two figure$ as a function of the frequency for a volume

fraction ¢=0.20. The two figures on the left-hand side show the experimental results and the figures on the right-hand side show the curves

fitted to these experiments. The applied shear rates aré 04s), 0.0125 s (A), 0.025s! (®),0.05s1(V),05s1(¢),1.25s?
(0),5s1(V),10s 1 (0O), 2551 (O).

disordered fluid phase, which depends on the steady shebecause there is no surface tension for the aggregate as-
rate 7, Graebling and Mullerf11] describe an emulsion sumed. From the calculated flow and stress fiskk Oost-
model of two viscoelastic liquids. This model is accurate uperbroek and Mellemi10] and the Appendix for detailsan

to order ¢ where ¢ is the volume fraction of the dispersed expression for the complex shear modulus of the dispersion
phase. The volume fraction of crystalline aggregatgs, IS obtained:

however, will be rather high at low shear rates, so we are
interested in a model foG* that is also applicable at high

¢ - Therefore an effective medium cell model for the linear
viscoelasticity of emulsions proposed by Oosterbroek and
Mellema[10] has been modified. In this model the spherical
aggregate with radius,=L/2 is at the center of a cell with
radiusr .. Within this cell the fluid surrounding the aggre- Where R=r./r,. The expressions fow,(E) are listed in
gate has a viscosity} and the aggregate’ =G*/iw. The  Table | whereE= 77/ 7; . The distance . can be regarded
oscillatory flow problem is solved for small deformations @s the effective hydrodynamic interaction radius. The rela-
when the aggregates stay almost spherical. Therefore the rion betweerr. and ¢, was taken equal to that proposed by
tational part of the flow may be neglected and only the purerhomas[12]: r.=fr,¢_*. He found that there was good
straining contribution is considered. At the outer boundary ofagreement with experiments fé=1.111 when he compared
the cell the flow field is supposed to match the macroscopiSimha’s theory[13] for the suspension viscosifwhich is
flow field. At the boundary of the aggregate the deformationequal to lim,_,o(G"(w)/w)] with high-shear steady-state
and stresses inside the aggregate match those inside the fluidscosity data on suspensions of rigid spheres. For low vol-

f3(% a7R"+ § o)

a10R10+ C!7R7+ CY5R5+ a3R3+ 7)) ,

()

G*=ilwnf| 1—
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FIG. 5. The storage modulsipper two figuresand the loss moduludower two figure$ as a function of the frequency for a volume
fraction ¢=0.30. The two figures on the left-hand side show the experimental results and the figures on the right-hand side show the curves
fitted to these experiments. The applied shear rates aré 0-s), 0.0125 s (A), 0.025s ! (@),0.05s 1 (V),05s 1 (A),1.25s !

(0).

ume fractions of aggregates this expressiorGdris equiva- by Goodwin et al. [14]. A comprehensive survey of the
lent to the result obtained by Graebling and Mu(lét]. The  preparation of latices is given by Heaenal. [15]. The pu-
dynamic moduluss* that results from this model shows two rification and characterization of the samples have been de-
separate transitions. The transition at low frequencies pefscribed in detail in a previous articd]. The latex disper-
tains to the relaxation process in which a deformed aggregatsions used for our experiments are characterized by the
relaxes to its equilibrium state. The strength of this transitiorparticle radiusa, the surface charge density on the particles
decreases with decreasing volume fraction of the ordereg the excess electrolyte concentratiog, and the volume
phase (droplets and also its typical time scale decreasesfraction ¢. The particle radius=195 nm was obtained from
since it is proportional top/GS where the viscosity of the electron microscopy and the surface charge density
dispersion,, decreases with decreasidg,, while GZ'is a  _4 g ,,c/cm? from conductometric titration. The electrolyte
constant. The second transition occurs at a higher frequenqpncentration of the latex has been reduced with an ion-
and stems from the fluid phase, which has been modelegychange resin as much as possible. The resulting electrolyte
with a Maxwell model according to Eq2). The strength of ., centration is about,=10 «M [1]. Samples with volume
t_his transition increases with decreasing droplet volume fracfractions¢=0.10, 0.20, 0.30, and 0.35 were used.

tion.

lIl. EXPERIMENTS B. Apparatus
To study the complex or dynamic shear viscosity of or-

A. The model fluid dered latices during steady shear flow, a home-made instru-
In the present study, we use a monodisperse polystyremaent was used, that applies a small amplitude harmonic
latex that has been prepared following the method describeshear orthogonal on a steady shear flow. This instrument has
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FIG. 6. The storage modulsipper two figuresand the loss moduludower two figure$ as a function of the frequency for a volume
fraction ¢=0.35. The two figures on the left-hand side show the experimental results and the figures on the right-hand side show the curves

fitted to these experiments. The applied shear rates are 006/s), 0.5 s ! (@), 1.25 s (V).

been described in detail by Zeegetsal.[7]. It consists of a  plitude of the shear strain. From this investigation we
thin walled cylinder that oscillates in an axial direction in an obtained a critical shear straip.=0.02 below which the
annular sample holder. The cylinder is suspended from &torage modulu§&’ and the loss modulu8” do not depend
spring, which in turn is attached to a linearly oscillating ex-on the shear straiy. The critical shear was almost indepen-
citer. The annular beaker can be rotated, providing the steadjent of applied frequency, shear rate, and volume fraction.
shear flow. From the measured phase differepcand am-  These observations are in line with those of Goodwin and

plitude ratioR of the oscillatory displacements of exciter and Hugheg16]. Also the influence of different shear histories of

cylinder the fluid impedanca* is obtained and fronz* the the latices due to the rather uncontrollable filling process of

complex shear modulu6* can be calculated. The instru- the instrument should be investigated and if possible mini-
3 mized by applying a well-defined shear history. To that end

ment operates in the fr'equency range from 100750 Hz the samples were presheared at 1.23.sThe behavior of
and the steady shear ragganges from 0.01t0 100°S. The  the complex modulus at a certain shear rate was measured
oscillatory shear amplitude of the instrument can be variedyfier different preshear times. The complex modulus mea-
between 0.003 and 3, so linearity of the measurements cafyred at zero shear rate depends most significantly on the
be checked. shear history. This case is shown in Fig. 2. From this figure
it follows that the behavior of the storage and the loss modu-
C. Measuring procedure lus becomes independent of the preshear time above 10 min
' preshearing. Moreover, the storage modulus is flattened by
Since we are interested in the linear viscoelastic behaviothe preshear and the minimum of the loss modulus decreases
of the latices, the linear regime for given experimental con-and shifts to lower frequencies due to the preshear. This
ditions was determined before every measurement by medndicates that preshearing results in an enhartloed) range
suring the dependency of the complex modulus on the amerdering in the sample. We also investigated the time it takes
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TABLE Il. The model parameters as obtained from this and previous y&drkhe columns froni5] are
indicated with(@); 7.,=80 s for all values ofp.

¢ G /e ‘y Re/a ber Yiil Tl 7o
[Pd [Pag [s7'] [Paq [s] [Paq
(@) (@) (@) (@)

0.1 0.2 0.003 0.0125 23 ? 0.32 0.65 0.19 3.24 0.65 0.55
0.025 22 ? 0.31 0.33 0.10 1.64 0.33 0.28
0.05 20 ? 0.30 0.17 0.054 0.759 0.17 0.14
0.5 12 ? 0.17 0.038 0.012 0.146 0.038 0.018

0.2 3.0 0.006 0.0125 46 045 048 1.05 1.69 0.326 15 12.5
0.025 45 044 048 0.71 0.86 0.220 10 6.25
0.05 44 0.44 048 0.42 0.44 0.125 5.8 3.14
0.5 37 0.24 045 0.18 0.059 0.0497 0.56 0.35
1.25 30 0.26 042 0.097 0.033 0.0253 0.35 0.16
5 17 0.25 0.31 0.016 0.018 0.0067 0.053 0.050

10 12 0.17 0.23 0.023 0.015 0.0142 0.023 0.030
25 8 0.13 0.09 0.011 0.012 0.0050 0.018 0.015

0.3 21 0.008 0.0125 73 048 055 6.2 481 0.258 110 65
0.025 73 045 055 31 2.43 0.155 45 33
0.05 70 056 054 20 1.23 0.0797 77 16
0.5 61 042 0.53 0.47 0.16 0.0159 5.9 1.8
1.25 50 043 050 0.22 0.087 0.0092 3.0 0.8

0.35 37 0.01 0.05 105 055 058 26 1.25 0.0700 98 25.7
0.5 79 049 055 0.68 0.19 0.0168 15 2.93
1.25 63 0.47 0.53 0.35 0.11 0.0113 6.4 1.34

before the complex modulus reaches its equilibrium valughe strength of the low frequency transition is more or less
after a change in the shear rate. It was found that in the worstompensated by an increasing strength of the high frequency
case, steady state was reached after 5 min of shearing.  transition so the added strength of the two transitions re-
Taking into account these considerations, the followingmains almost constant. In addition fg¢=0.10 and 0.20, the

measuring procedure has been set up. After filling the instrulpss modulus measured for different shear rates at high fre-
ment with 10 ml latex, the material is presheared at a sheajyencies tends to coincide on a single curve with a constant
rate of 1.25 s for 20 min. Subsequently, shearing is high-frequency viscosity®" = 7..»).

stopped and the complex modul@s is measured as a func-  “the measurements are compared with the model de-
tion of the frequency at zero shear rate. N&Xtis measured  gcripeq in Sec. II. This model contains six independent pa-

for increasing steady shear rates after applying this shear I} meters: the high-frequency modulG§' of the crystallites,

for 5 min. In order to obtain information on the reproducibil- sy of the fluid phase, and the characteristic time scajes

ity, the experiment is repeated after filling the apparatusandT of both phases. The fifth parameter is the high fre-
again with a new sample. f ,

quency viscosityy,, , which is taken equal for both the ag-
. gregates and the fluid phase. The last parameter in this model
D. Results and analysis is the volume fraction of aggregates,. The viscoelastic
The experimental results fas=0.10, 0.20, 0.30, and 0.35 properties of a single crystallite in shear flow are assumed to
are presented in the left panels of Figs. 3 through 6, respede identical with that of the dispersion at zero shear rate. So
tively. For all volume fractions, except=0.10, the storage the values foiGY, 7, and 7., have been determined, for all
and loss moduli measured at low shear rates indicate thiur volume fractions independently, by comparing the mea-
existence of at least two transitions. The characteristic fresurements at zero shear rate with the Maxwell model de-
qguency of both transitions increases with increasing sheascribed by Eq(1). The values found this way for these pa-
rate. The strength of the low-frequency transition decreasemmeters are used in the analysis of the measurements at
with increasing shear rate. Since the high frequency modulusonzero shear rate. Thus, the only remaining parameters are
does not depend strongly on the shear rate, the decrease ¢f, 7, and ¢,. These have been determined, for each
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FIG. 7. The volume fraction of ordered domainugpper lef}, the mean radius of the ordered domainpper righj, the viscosity of the
disordered fluidlower left) and the viscosity of the suspensidower right figure as a function of the steady rate of shear for a volume
fraction ¢=0.20. The solid lines represent the results obtained from the flow curve modeling and the dashed lines the results from the
viscoelastic modeling.

shear rate independently, by comparing the model to the extisordered phaser) is strongly shear thinning. Moreover
perimental results. The obtained values for the paramthe volume fraction of ordered domains,,, indeed shows a

eters. are I|steq in  Table Il tf)gether with tendency to decrease with increasir';g which is most
no=lim ,_o[G* (w,y)/w]. The corresponding curves are clearly for $=0.2.

shown in the right panels of Fig. 3 through 6. F60.10, The measurements indicate that the complex modulus
where just one transition is visible, no significant Cont”b”'consists of two sets of relaxation times instead of the two
tion from the ordered domains cpuld .be obtained so for thi%istinct times present in our model. This can be concluded,
value of ¢ no values forg, are given in Table II. for instance, from the fact that the local minimum in the loss
modulus at zero shear rate is not as deep as predicted by our
model. Indeed one should expect a series of relaxation times

From the two distinct transitions observed in the dynamidnstead of a single time due to the many particle interactions
measurements shown in Figs. 4 through 6 we conclude thgaresent in the material that cause excitation of many internal
there are two sets of relaxation processes acting in the fluidnodes.

For a fixed volume fraction the total strength of the two The results of this work can be compared with those ob-
transitions is more or less constanB(~cons) and the tained recently by van der Vorst al. [5] for the steady
strength of the low frequency transition decreases with inshear viscosity of these dispersions. Although the model
creasing shear rate. Above observations are consistent witksed in that study is completely different from the present
our hypothesis based on the experiments of Ingtadl. [6],  one, they both result in values for the microrheological pa-
that in a steady shear flow the latex dispersion consists alametersp., and 7y . Therefore these values are also listed in
ordered domains, space filling at rest, which melt away inTable Il together with the parametBg,. Both models show
favor of the disordered fluid phase. The model based on thisore or less the same dependence of the parameters upon the
hypothesis describes the experiments quite well. From Tableolume fraction and the rate of shear, as can be seen in Fig.
Il one observes that, in the frame of this model, not only the7. In the upper two panels of this figure the shear melting
viscosity of the dispersions,) but also the viscosity of the process is shown, while in the lower two not only the shear

IV. DISCUSSION AND CONCLUSIONS
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thinning behavior of the suspension but also that of the dis- -

ordered fluid phase is shown. Although the models in both

cases are rather crude, they capture the main features of the 7

behavior of ordering latex suspensions in a steady shear

fow J P Y Sh%lhere  yp=CiR©+CR®  and  y4=CJ RO+ CIR!
: 5 3 —

It is possible to improve the model, but before that the nextt CsR°+C3R*+Cq. In the present casep=7; and

aspects have to be studied. First in the analysis of the experf2= ®cr- The coefficientsC, reduce to

Yo
:¢_/’
Yo

ment isotropy of the sample itself is assumed, but this is Ca= —190(E—1)2
doubtful in the case of long range ordering in the sample. 3 '
Second the variation of the steady shear rate over the gap due Cro=+10(19E+ 16)(E—1),
to the strong shear thinning behavior of the suspension gives

rise to a systematic error in the measuf&t, which can be Cy=+76(E—1),

as large as a factor 2. However, the measurements do not

change qualitatively when corrected. Considering this our Ci=—2519%E+18)(E—1),
model describes the measured linear viscoelastic behavior

adequately. It corroborates the experimental results even Ci=+42(19E+16)(E—-1),
guantitatively rather well, indicating that our hypothesis is

useful in describing processes such as the one studied here. C;=—-2519%E+16)(E—-1),
In order to obtain more quantitative results both the experi-

mental method and the modeling will be studied in more Cio=+2(19%E+16)(2E+3).

detail in the future. : 3 ¢3m—3 )
Rememberingp. = (fr,/r;)°=f°R™° one obtains

APPENDIX: FORMAL CALCULATION OF G* G*=iwnp*

To calculateG* of the dispersion the result of Ooster- £3(C,R7+ Ca)
broek and Mellem410] can be used directly. Since there is —iwnt 10 3 ,
no interface present between aggregate and fluid all the in- C1oR¥+C5R7+ CLR>+ CLR3+C)
terface parameters are set equal to zero and becdduse (A1)
their expression for the complex viscositizq. (A1.2)] re-
duces to which is, after some manipulation, equivalent with Egj.
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